Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Glob Health ; 90(1): 1, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38186855

RESUMEN

Background: Since the Industrial Revolution, humanity has amassed great wealth and achieved unprecedented material prosperity. These advances have come, however, at great cost to the planet. They are guided by an economic model that focuses almost exclusively on short-term gain, while ignoring natural capital and human capital. They have relied on the combustion of vast quantities of fossil fuels, massive consumption of the earth's resources, and production and environmental release of enormous quantities of chemicals, pesticides, fertilizers, and plastics. They have caused climate change, pollution, and biodiversity loss, the "Triple Planetary Crisis". They are responsible for more than 9 million premature deaths per year and for widespread disease - impacts that fall disproportionately upon the poor and the vulnerable. Goals: To map the human health impacts of climate change, pollution, and biodiversity loss. To outline a framework for assessing the health benefits of interventions against these threats. Findings: Actions taken by national governments and international agencies to mitigate climate change, pollution, and biodiversity loss can improve health, prevent disease, save lives, and enhance human well-being. Yet assessment of health benefits is largely absent from evaluations of environmental remediation programs. This represents a lost opportunity to quantify the full benefits of environmental remediation and to educate policy makers and the public. Recommendations: We recommend that national governments and international agencies implementing interventions against climate change, pollution, and biodiversity loss develop metrics and strategies for quantifying the health benefits of these interventions. We recommend that they deploy these tools in parallel with assessments of ecologic and economic benefits. Health metrics developed by the Global Burden of Disease (GBD) study may provide a useful starting point.Incorporation of health metrics into assessments of environmental restoration will require building transdisciplinary collaborations. Environmental scientists and engineers will need to work with health scientists to establish evaluation systems that link environmental and economic data with health data. Such systems will assist international agencies as well as national and local governments in prioritizing environmental interventions.


Asunto(s)
Contaminación Ambiental , Restauración y Remediación Ambiental , Humanos , Contaminación Ambiental/prevención & control , Personal Administrativo , Altruismo , Biodiversidad
3.
Ann Glob Health ; 89(1): 49, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37521755

RESUMEN

Background: Human activities have induced unprecedented global shifts in natural systems including the climate, the oceans, cryosphere and biosphere. The impacts of these changes on physical health are clear and are accelerating at an alarming rate. Climate change and its consequences, especially disruptive events like floods, droughts and heat waves also impact the mental health of affected populations, increasing risk for post-traumatic stress, depression and anxiety disorders. However, the impact of climate change on mental health is not well examined and has received less attention than climate's impacts on physical health. Goal: The paper examines the planetary health-mental health nexus. It assesses the existing state of knowledge on the association between climate events, natural disasters, pollution, access to green space and mental health. It also presents a global analysis of the economic costs of climate-related mental health disorders by developing scenarios estimating the costs of mental illness at the country level predicted to be attributable to changes in environmental factors during the period 2020-2050. Findings: Globally, the additional societal costs of mental disorders due to changes in climate-related hazards, air pollution and inadequate access to green space are estimated to be almost US$47 billion annually in 2030. These estimated costs will continue to grow exponentially to US$537 billion in 2050, relative to a baseline scenario in which these environmental factors remain at 2020 levels. Conclusions: Our scenario analysis shows that the costs associated with climate-related mental health morbidity and mortality are high already and continue to will increase sharply in coming decades. There is need therefore to strengthen the evidence linking climate change to mental health and to prioritize the development of evidence-based and impactful interventions to address the global burden of environment-related mental disorders.


Asunto(s)
Contaminación del Aire , Salud Mental , Humanos , Conservación de los Recursos Naturales , Contaminación del Aire/efectos adversos , Inundaciones , Cambio Climático
4.
Ann Glob Health ; 89(1): 23, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36969097

RESUMEN

Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbonmetric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.


Asunto(s)
Enfermedades Cardiovasculares , Disruptores Endocrinos , Retardadores de Llama , Gases de Efecto Invernadero , Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Estados Unidos , Niño , Animales , Humanos , Masculino , Femenino , Preescolar , Plásticos/toxicidad , Plásticos/química , Ecosistema , Mónaco , Microplásticos , Contaminantes Orgánicos Persistentes , Disruptores Endocrinos/toxicidad , Carbón Mineral
5.
Psychol Med ; 53(3): 638-653, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36606450

RESUMEN

Climate change may affect mental health. We conducted an umbrella review of meta-analyses examining the association between mental health and climate events related to climate change, pollution and green spaces. We searched major bibliographic databases and included meta-analyses with at least five primary studies. Results were summarized narratively. We included 24 meta-analyses on mental health and climate events (n = 13), pollution (n = 11), and green spaces (n = 2) (two meta-analyses provided data on two categories). The quality was suboptimal. According to AMSTAR-2, the overall confidence in the results was high for none of the studies, for three it was moderate, and for the other studies the confidence was low to critically low. The meta-analyses on climate events suggested an increased prevalence of symptoms of post-traumatic stress, depression, and anxiety associated with the exposure to various types of climate events, although the effect sizes differed considerably across study and not all were significant. The meta-analyses on pollution suggested that there may be a small but significant association between PM2.5, PM10, NO2, SO2, CO and mental health, especially depression and suicide, as well as autism spectrum disorders after exposure during pregnancy, but the resulting effect sizes varied considerably. Serious methodological flaws make it difficult to draw credible conclusions. We found reasonable evidence for an association between climate events and mental health and some evidence for an association between pollution and mental disorders. More high-quality research is needed to verify these associations.


Asunto(s)
Salud Mental , Suicidio , Femenino , Humanos , Embarazo , Ansiedad/epidemiología , Trastornos de Ansiedad , Parques Recreativos , Metaanálisis como Asunto
7.
Lancet Planet Health ; 5(10): e681-e688, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34627472

RESUMEN

BACKGROUND: Africa is undergoing both an environmental and an epidemiological transition. Household air pollution is the predominant form of air pollution, but it is declining, whereas ambient air pollution is increasing. We aimed to quantify how air pollution is affecting health, human capital, and the economy across Africa, with a particular focus on Ethiopia, Ghana, and Rwanda. METHODS: Data on household and ambient air pollution were from WHO Global Health Observatory, and data on morbidity and mortality were from the 2019 Global Burden of Disease Study. We estimated economic output lost due to air pollution-related disease by country, with use of labour income per worker, adjusted by the probability that a person (of a given age) was working. Losses were expressed in 2019 international dollars and as a proportion of gross domestic product (GDP). We also quantified the contribution of particulate matter (PM)2·5 pollution to intelligence quotient (IQ) loss in children younger than 10 years, with use of an exposure-response coefficient based on previously published data. FINDINGS: Air pollution was responsible for 1·1 million deaths across Africa in 2019. Household air pollution accounted for 697 000 deaths and ambient air pollution for 394 000. Ambient air pollution-related deaths increased from 361 000 in 2015, to 383 000 in 2019, with the greatest increases in the most highly developed countries. The majority of deaths due to ambient air pollution are caused by non-communicable diseases. The loss in economic output in 2019 due to air pollution-related morbidity and mortality was $3·02 billion in Ethiopia (1·16% of GDP), $1·63 billion in Ghana (0·95% of GDP), and $349 million in Rwanda (1·19% of GDP). PM2·5 pollution was estimated to be responsible for 1·96 billion lost IQ points in African children in 2019. INTERPRETATION: Ambient air pollution is increasing across Africa. In the absence of deliberate intervention, it will increase morbidity and mortality, diminish economic productivity, impair human capital formation, and undercut development. Because most African countries are still early in development, they have opportunities to transition rapidly to wind and solar energy, avoiding a reliance on fossil fuel-based economies and minimising pollution. FUNDING: UN Environment Programme.


Asunto(s)
Contaminación del Aire , Contaminación del Aire/estadística & datos numéricos , Niño , Etiopía/epidemiología , Carga Global de Enfermedades , Humanos , Renta , Material Particulado/análisis , Material Particulado/toxicidad
8.
Environ Health ; 20(1): 34, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33771185

RESUMEN

BACKGROUND: An unusual feature of SARS-Cov-2 infection and the COVID-19 pandemic is that children are less severely affected than adults. This is especially paradoxical given the epidemiological links between poor air quality and increased COVID-19 severity in adults and that children are generally more vulnerable than adults to the adverse consequences of air pollution. OBJECTIVES: To identify gaps in knowledge about the factors that protect children from severe SARS-Cov-2 infection even in the face of air pollution, and to develop a transdisciplinary research strategy to address these gaps. METHODS: An international group of researchers interested in children's environmental health was invited to identify knowledge gaps and to develop research questions to close these gaps. DISCUSSION: Key research questions identified include: what are the effects of SAR-Cov-2 infection during pregnancy on the developing fetus and child; what is the impact of age at infection and genetic susceptibility on disease severity; why do some children with COVID-19 infection develop toxic shock and Kawasaki-like symptoms; what are the impacts of toxic environmental exposures including poor air quality, chemical and metal exposures on innate immunity, especially in the respiratory epithelium; what is the possible role of a "dirty" environment in conveying protection - an example of the "hygiene hypothesis"; and what are the long term health effects of SARS-Cov-2 infection in early life. CONCLUSION: A concerted research effort by a multidisciplinary team of scientists is needed to understand the links between environmental exposures, especially air pollution and COVID-19. We call for specific research funding to encourage basic and clinical research to understand if/why exposure to environmental factors is associated with more severe disease, why children appear to be protected, and how innate immune responses may be involved. Lessons learned about SARS-Cov-2 infection in our children will help us to understand and reduce disease severity in adults, the opposite of the usual scenario.


Asunto(s)
COVID-19/epidemiología , Salud Infantil , Exposición a Riesgos Ambientales/efectos adversos , Salud Ambiental , Adulto , Factores de Edad , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , COVID-19/inmunología , COVID-19/patología , COVID-19/prevención & control , Niño , Susceptibilidad a Enfermedades/epidemiología , Susceptibilidad a Enfermedades/inmunología , Susceptibilidad a Enfermedades/patología , Exposición a Riesgos Ambientales/prevención & control , Desarrollo Fetal , Humanos , Hipótesis de la Higiene , Inmunidad Innata , Sistema Respiratorio/patología , Sistema Respiratorio/virología , SARS-CoV-2
10.
Environ Health Perspect ; 127(10): 105001, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31626566

RESUMEN

BACKGROUND: The Global Burden of Disease (GBD) study, coordinated by the Institute for Health Metrics and Evaluation (IHME), produces influential, data-driven estimates of the burden of disease and premature death due to major risk factors. Expanded quantification of disease due to environmental health (EH) risk factors, including climate change, will enhance accuracy of GBD estimates, which will contribute to developing cost-effective policies that promote prevention and achieving Sustainable Development Goals. OBJECTIVES: We review key aspects of the GBD for the EH community and introduce the Global Burden of Disease-Pollution and Health Initiative (GBD-PHI), which aims to work with IHME and the GBD study to improve estimates of disease burden attributable to EH risk factors and to develop an innovative approach to estimating climate-related disease burden-both current and projected. METHODS: We discuss strategies for improving GBD quantification of specific EH risk factors, including air pollution, lead, and climate change. We highlight key methodological challenges, including new EH risk factors, notably evidence rating and global exposure assessment. DISCUSSION: A number of issues present challenges to the scope and accuracy of current GBD estimates for EH risk factors. For air pollution, minimal data exist on the exposure-risk relationships associated with high levels of pollution; epidemiological studies in high pollution regions should be a research priority. For lead, the GBD's current methods do not fully account for lead's impact on neurodevelopment; innovative methods to account for subclinical effects are needed. Decisions on inclusion of additional EH risk-outcome pairs need to be guided by findings of systematic reviews, the size of exposed populations, feasibility of global exposure estimates, and predicted trends in exposures and diseases. Neurotoxicants, endocrine-disrupting chemicals, and climate-related factors should be high priorities for incorporation into upcoming iterations of the GBD study. Enhancing the scope and methods will improve the GBD's estimates and better guide prevention policy. https://doi.org/10.1289/EHP5496.


Asunto(s)
Exposición a Riesgos Ambientales/estadística & datos numéricos , Salud Ambiental , Carga Global de Enfermedades , Salud Global , Humanos , Mortalidad Prematura , Factores de Riesgo
11.
Environ Health Perspect ; 126(8): 084501, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30118434

RESUMEN

SUMMARY: Pollution is a major, overlooked, global health threat that was responsible in 2015 for an estimated 9 million deaths and great economic losses. To end neglect of pollution and advance prevention of pollution-related disease, we formed the Lancet Commission on Pollution and Health. Despite recent gains in understanding of pollution and its health effects, this Commission noted that large gaps in knowledge remain. To close these gaps and guide prevention, the Commission made research recommendations and proposed creation of a Global Observatory on Pollution and Health. We posit that successful pollution research will be translational and based on transdisciplinary collaborations among exposure science, epidemiology, data science, engineering, health policy, and economics. We envision that the Global Observatory on Pollution and Health will be a multinational consortium based at Boston College and the Harvard T.H. Chan School of Public Health that will aggregate, geocode, and archive data on pollution and pollution-related disease; analyze these data to discern trends, geographic patterns, and opportunities for intervention; and make its findings available to policymakers, the media, and the global public to catalyze research, inform policy, and assist cities and countries to target pollution, track progress, and save lives. https://doi.org/10.1289/EHP3141.


Asunto(s)
Contaminación Ambiental/prevención & control , Salud Global , Política de Salud , Boston
12.
Ambio ; 38(1): 35-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19260345

RESUMEN

This paper describes the process of urbanization and land use change in the urban ecosystems of the National Capital Region (NCR) of Delhi, India. Two types of land use change are considered-from natural to urban and from agricultural to urban. Both types are explained in terms of economic variables known to be drivers of change. A panel data method was used, and economic variables were combined with GIS-based information on land use change during 1986-2004 for 11 administrative units of the NCR. The results suggest that investment in the construction sector plays a major role in converting the land from natural to urban areas, while differences in land productivity seems to be the major driver for change from agricultural to urban uses.


Asunto(s)
Ciudades , Planificación de Ciudades/economía , Ecosistema , Agricultura/economía , Planificación de Ciudades/métodos , Empleo/economía , Geografía , India , Dinámica Poblacional
13.
Philos Trans R Soc Lond B Biol Sci ; 363(1492): 789-813, 2008 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-17827109

RESUMEN

Agricultural lands occupy 37% of the earth's land surface. Agriculture accounts for 52 and 84% of global anthropogenic methane and nitrous oxide emissions. Agricultural soils may also act as a sink or source for CO2, but the net flux is small. Many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management and restoration of degraded lands and cultivated organic soils. Lower, but still significant mitigation potential is provided by water and rice management, set-aside, land use change and agroforestry, livestock management and manure management. The global technical mitigation potential from agriculture (excluding fossil fuel offsets from biomass) by 2030, considering all gases, is estimated to be approximately 5500-6000Mt CO2-eq.yr-1, with economic potentials of approximately 1500-1600, 2500-2700 and 4000-4300Mt CO2-eq.yr-1 at carbon prices of up to 20, up to 50 and up to 100 US$ t CO2-eq.-1, respectively. In addition, GHG emissions could be reduced by substitution of fossil fuels for energy production by agricultural feedstocks (e.g. crop residues, dung and dedicated energy crops). The economic mitigation potential of biomass energy from agriculture is estimated to be 640, 2240 and 16 000Mt CO2-eq.yr-1 at 0-20, 0-50 and 0-100 US$ t CO2-eq.-1, respectively.


Asunto(s)
Agricultura/métodos , Crianza de Animales Domésticos/métodos , Productos Agrícolas/metabolismo , Ecosistema , Fuentes Generadoras de Energía , Efecto Invernadero , Agricultura/economía , Crianza de Animales Domésticos/economía , Animales , Biomasa , Dióxido de Carbono/metabolismo , Análisis Costo-Beneficio , Fuentes Generadoras de Energía/economía , Humanos , Estiércol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...